If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4z^2-24z=0
a = -4; b = -24; c = 0;
Δ = b2-4ac
Δ = -242-4·(-4)·0
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-24}{2*-4}=\frac{0}{-8} =0 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+24}{2*-4}=\frac{48}{-8} =-6 $
| -4.5=x/9.5 | | -4z^2=24z | | 0.25x=4500 | | 2^x=8^3x+5 | | c^2=25+49 | | 0=15+(-9.8)x | | 16x-6+15x=x | | 16x-6=x | | 4x+5-2=26 | | 17x=1+16x | | 18x-2=-2(-9x+1) | | 18x+(-6)(3x+1)=8x-5(x-3) | | 3y+6=123 | | 3(5x-2)=-4+10 | | 19+6w=66 | | 123=3y+6 | | -7(8-x)+5(11-x)+5=0 | | (8s+5)(3s-9)=0 | | (8s+5)(3s-9=0 | | -x-2(1-x)=-3(x+12) | | X-2=2/3y | | -4x-24=64 | | 5x+30=3x-10=180 | | 5x+30=3x=10=180 | | 50*3^(3x)=9 | | 50*3(3x)=9 | | 17-7x=5-3x | | 38x=118 | | -58.2=6x+9.6 | | x+12+4x+8=180 | | -4(1.5x-5)+4x=36 | | x+12=4x+8 |